Pisagor ve Müzik

Written by
Pisagor ve Müzik 1
Paylaşım

Tarih boyunca pek çok matematikçi müzikle ilgilenmiştir. Bazılarımızın aklına ‘Acaba pek çok müzisyen de matematikle ilgilenmiş midir?’ gibi bir soru takılabilir. Kuşkusuz ilgilenen müzisyenler vardır ancak bir karşılaştırma yapılırsa matematikçiler çok daha öndedirler.

Eski Yunan’ da müzik, matematiğin 4 ana dalından biri olarak kabul edilmiştir. Pythagoras (M.Ö. 586) okulunun (Quadrivium) programına göre Müzik; Aritmetik, Geometri ve Astronomi ile aynı düzeyde kabul görmüştür.

Bir telin değişik boyları ile değişik sesler elde edildiğini ortaya çıkartan Pyhagoras, M.Ö. 6. yüzyılda yaşamıştır ve bugün kullanılmakta olan müzikal dizinin temelini oluşturması açısından oldukça önemli bir iş yapmıştır.

Pythagoras, 12 birimlik bir teli ikiye bölmüş ve oktavı elde etmiştir.  Elde edilen 6 birimlik uzunluk ( telin ½ si), 12 birimlik uzunluğun bir oktav tizidir. Pythagoras 8 birimlik uzunluk ile (telin 2/3 ü) 5 li aralığı, 9 birimlik uzunluk ile (telin ¾ ü) 4 lü aralığı bulmuştur.

Pisagor ve Müzik 3

Müzik ve Matematik

Pythagoras oranlarına göre, 5 li ile 4 lü arasındaki fark tam tonu vermektedir.

2/3:3/4=8/9  (5T-4T=2M ) Yani, tam sesin 8/9 ile çarpımı bize o sesin bir ton tizini vermektedir.

Devam edecek olursak;  8/9.8/9=64/81  (2M+2M=3M)

Esas sesimiz “do” olsun.  Do nun ½ si bize do nun bir oktav tizini, 2/3 ü “sol” sesini, ¾ ü “fa” sesini, 8/9 i ise “re” sesini, 64/81 i ise ” mi” sesini vermektedir.

Bu şekilde gidildiği zaman; Do, re, mi, fa, sol, la, si, do sesleri sırasıyla; 1, 8/9, 64/81, ¾, 2/3, 16/27, 128/243 ve 1/2  oranları ile ifade edilir.

Pythagoras, telin 8/9 u ile 1 tam tonu elde etmiştir, ancak bir notaya 6 kez tam ton ilave edildiğinde neredeyse o notanın oktavı elde edilmiştir ki bu da “Pythagoras koması” olarak adlandırılır. Bu durumda Pythagoras sisteminde bazı değişikliklere gerek duyulmuş ve böylece zaman içinde tampere edilmiş bir şekilde 12 eşit yarım tonluk bir sistem geliştirilmiştir.  1 tam ton 8/9 ile değil iki yarım ton ile gösterilmiştir.

Aşağıdaki animasyonda rakamları tıklayarak olayı daha iyi gözlemleyebilirsiniz.

Kaynak: https://www.matematiksel.org/muzigin-icindeki-matematik-matematigin-icindeki-muzik/

FB Yorum Ekleyin

Bir cevap yazın

Paylaşım